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Heat Transfer Mechanisms

● Convection

● Radiation

● Conduction

Ø Convection is a mass movement of fluids (liquid or gas) rather than
a real heat transfer mechanism (heat transfer is with convection
rather than by convection)

Ø Radiative heat transfer is important at high temperature

Ø Conduction is heat transfer by molecular or atomic motion

Three fundamental mechanisms of heat transfer: 1
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Phonon-defectPhonon-phonon Phonon-electron

Macroscale          *****                ***                                *            

       

Phonon-boundary

Phonon Scattering Mechanisms Phonon Length  Scales

● Usually l < Λ < L
● New physics arises when L is reduced to nanometers

L

Λ
λ

Diamond at 300K
 ~300nm

D~30nm

from J.S. Blakemore, Solid State Physics, p. 138 (1989) 

Sample-size dependent thermal
conductivity of single crystal LiF

L~7mm

L~1mm
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Phonon-defectPhonon-phonon Phonon-electron

Macroscale          *****                ***                                *              

Phonon-boundary

Phonon Scattering Mechanisms

Nanoscale              **                    ***                            *****

Thermal Conductivity in Yttria-Stabilized Zirconia

Simulation: Effect of stoichiometry

Experiment: Effect of interfaces
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Thermal Transport in Yttria-Stabilized Zirconia
 Point defect scattering and interface scattering

 a
 a

 a

Oxygen Site

Zirconium/Yttrium site

Doping with Y2O3:

1. Remove two ZrO2

2. Replace with one Y2O3 

Introduces Y3+ substitional ions and
 O vacancies, resulting in point 
  defect scattering.

Fourier’s Law

● Fourier’s Lawq = −k
T

x

heat
source

T

x



7

Interfacial (Kapitza) Thermal Resistance
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● Kapitza resistance results in
temperature discontinuities at
interfaces

● Rk and ko are obtained by a 2-
parameter fit to k(d)

● Nanocrystalline materials

Kapitza resistance in YSZ

H.-S. Yang et al., Acta Mater. (2002)

● Rk = 4.5E-9 m2-K/W @ 300 K
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Rk temperature dependence

● At low T, Rk is dominated by Cp, but is ~ constant above ΘD

H.-S. Yang et al.,  Acta Mater. (2002)

Cahill, Goodson, and Majumdar, Jn. Heat Transfer , 124, 223, (2002)

YSZ Yang et al.  (2002)
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● data for nanocrystalline YSZ similar to that for several
heterophase systems

Kapitza Conductance
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Phonon mean-free-path length

● Why is mean-free
path in YSZ so small?

Phonon mean-free-path
10 K 300 K

diamond 1 mm 3000 Å

quartz 75 µm 100 Å

Λ = 3k

Cpv  δ       δ

 -∆ε+∆ε
  Jz Jz

   Z=0

  Jz

=-Lz/2    Z=-Lz/4    Z=Lz/4   Z=Lz

 • Non-equilibrium: Add and remove heat

Simulation of Thermal Conductivity

• Equilibrium: Green-Kubo Method

J=-κ (dT/dz)

κµν(ω,T)  = (1/ΩkT2) <Jµ(ω) Jν(ω)>
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        (W/mK) for Si

500K     1000K
Add/Remove heat           119±40      65±16

Equilibrium Sim. -  62±16

Expt.(extrapolated) ~120   ~50

• Two method agree
• Large error bars
• No microscopic information
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Temperature and Concentration Dependence of 
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Normal Modes in Amorphous Materials

• Nature of normal modes reveals thermal conduction mechanism

• Classification scheme due to Feldman and Allen (PRB48, 1993):

Locons:         Localized modes

Diffusons:     Delocalized mode, but with no k-vector

Propagons:   Delocalized mode, can define a k-vector

•For a-Si 93% of normal modes are diffusons
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•  Localization a small effect, like a-Si

• Like a-Si, diffusons are dominant transport mechanism

• Hence concentration and temperature independence of κ

Simulation
• computationally costly
• 10-20% error bars
• one number
• no microscopic information

Thermal conductivity

Experiment
• currently little information on interfaces
• interpretation is indirect
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Elucidate elementary processes: 

Simulate phonon-interface interactions

Interface Scattering

Acoustic mismatch model

Diffuse mismatch model

ρΑ
cΑ

ρB

cBZ = ρ c

tAB = 4ZAZB/ (ZA + ZB)2

DΑ(ω) DΒ(ω)
tAB(ω) = DB(ω)/ (DA(ω)+DB(ω))

ρ -density
c -speed of sound

D(ω) - density of states
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Elementary Process of Thermal Conductivity in Interfacial
Systems:

 Phonon/Interface Scattering

MA = MSi MB = 4MSi

MA = MSi MB = 4MSi

• Interface created from a simple mass discontinuity

• All interactions: Stillinger-Weber Si potential

[001]

1. LA ⇒ LA transmission
2. LA ⇒ LO transmission
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k=0.02
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M=1M=4

LA->LA

kz =0.02

4x4x1000
    cells

1. LA ⇒ LA transmission
2. LA ⇒ LO transmission
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κmax = 0.64

ν max = 9THz



16

LA

kz =0.62

M=1 M=4
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LO

kz =0.90

M=4 M=1

0
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12

14
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LA m=mSi

LA m=4mSi

LO m=4mSi

kz (2π/a)

1

2

N=4 Superlattice

• MA = MSi        MB = 4MSi

A B A B A B
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z [a0]

N=4
t=53ps

MD simulation of phonons through N=4 superlattice N=4 Superlattice Structure

• MA = MSi        MB = 4MSi

A B A B A B

                             Scattering at interfaces

• Energy transmission coefficient:α
•  Amplitude

- transmission   
- reflection B-A
- reflection A-B   

1 −
− 1− phase change
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LA

kz =0.02

M=1M=4

4x4x1000
    cells

Constructive vs. Destructive Interference

A       B         A         B        A         B        A        B

A       B         A         B        A         B        A        B

constructive

destructive

+

+
+

A       B         A         B        A         B        A        B

+
+

+

-
+
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Wave packet time [t0] E/E0

MD

E/E0

particles with

interference

E/E0

particles

without

interference

1 1.00 0.70015 0.70023 0.70023

2 1.67 0.00880 0.00878 0.00878

3 2.33 0.01083 0.01086 0.00889

4 3.00 0.00505 0.00512 0.00704

MD simulation and particle model agree quantitatively Interference effects essential in superlattices

• N=2, N=4 results of particle model agree exactly with MD results

• Interference effects increase the amount of transmitted energy

  

B
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B
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Lines :analytic results with no interference.

Points: interfering particle model.
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destructive interference dominates

No interference

simulation

Thermal Transport at grain boundaries
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σΚ   =  0.85GW/m2K    for (001) Σ29 boundary  - high energy 

σΚ   =  1.53GW/m2K    for (111) Σ31 boundary - low energy

Interfacial scattering at twist grain boundaries in Si

  

450

470

490

510

530

550

0 50 100 150 200 250 300 350 400 450

T
e

m
p

e
ra

tu
re

(K
)

Σ31 111

z(nm)

  

450

470

490

510

530

550

0 50 100 150 200 250 300 350 400

Te
m

pe
ra

tu
re

 (K
)

z (nm)

Σ29 001

J = σK ∆T

Egb = 0.64 J/m2Egb = 1.32 J/m2

(100) θ=43° Σ

LA

kz =0.05
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(100) θ=43° Σ

LA

kz =0.90

Nanofluids

Material Room Temperature

Thermal
Conductivity
(W/m-K)

Metallic Solids: Silver 429

Copper 401

Aluminum 237

Nonmetallic Solids: Diamond 3300

Silicon 148

Alumina (Al2O3) 40

Metallic Liquids: Sodium @ 644K 72.3

Nonmetallic
Liquids:

Water 0.613

Ethylene Glycol 0.253

Engine Oil 0.145

● Fluids have low k compared to most solids

● Goal is to enhance effective
fluid thermal conductivity and
heat transfer coefficient by
suspending solid nanoparticles

● Nanoparticles provide
advantages due to better
dispersion behavior, less
clogging and abrasion, and
much larger total surface area

U.S. Choi and J.A. Eastman, “Enhanced Heat
Transfer Using Nanofluids,” U.S. Patent #6,221,275
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Thermal conductivity of nanofluids

J.A. Eastman et al., Appl. Phys. Lett., 78, 718 (2001)

J. A Eastman, S. Choi ANL

nanotubes

Possible mechanisms

● Possible microscopic mechanisms:
 (P. Keblinski et al., ASME Journal of Heat Transfer  45, 
pp. 855-863 (2002))

➨ Brownian motion (but thermal motion is
expected to be faster than expected
particle motion)

➨ Effect of particles on liquid local ordering
(effectively decreases average spacing
between particles)

➨ Ballistic rather than diffusive thermal
transport in the particles (but isn’t
expected to affect transport between
particles)

➨ Nanoparticle clustering (would probably
lead to poor dispersion properties)

● Simulation studies are in progress
(L. Xue, P. Keblinski and S.R. Phillpot)

Copper (bulk
amorphous) Al (liquid)

P. Geysermans et al., Jn. Chem. Phys.,
113, 6382, 2000.
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Conclusions
• MD simulation of thermal conductivity

• MD simulation of phonon dynamics

• Particle model of phonon dynamics
- interference effects important
- can quantitatively reproduce MD results

Outlook

• MD simulation of phonon dynamics at grain boundaries
- mode coupling
- diffusive scattering at GBs

• Particle model
- finite mean free path, mode coupling,
- diffusive scattering
-2-d and 3-d systems

Outlook- Multiscale Simulation of Thermal Transport 

Continuum 
Simulations

 of Heat Transfer

Mesoscale Models
of Phonon
Transport

Atomistic
Simulations

 d ~ Λd ~ λ

 - phonon mean free path  - wavelength

d
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Outlook - Different mechanisms

silicon rhodium

diamond diamond
grain boundary
phonon-phonon

polymer diamond
hard/soft
phonon-
vibrational

phonon-electron

Outlook - Thermal Transport in Nanostructures
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